
A study of machine learning 
approaches to

cross-language code clone detection

Daniel Perez M2

Chiba Shigeru Lab



Clone detection

Detect duplicated code in programs

• Single language: programs in same language

• Cross language: programs in different languages

Motivation for cross-language
Refactoring large systems

• Sub-systems often use multiple languages

• Code duplication may occur across sub-systems

2

def add(a, b):

return a + b

int add(int a, int b) {

return a + b;

}

Python function

Java function



Current approaches to clone detection
• Token based approach

• Simple

• Fast

• Can lack expressiveness

3

• Tree based approach
• Powerful

• Slow, usually 𝑂(𝑛3) or more

Current approaches are designed for clone detection in single language

["def", "add", "(", "a", 
"b", ")", ":", "\n", "\t",
"return", "a", "+", "b"]



Case study: SourcererCC

Overview
• Current state-of-the-art clone detection tool

• Uses token based approach
• Create reverse index of tokens
• Match tokens in the code fragment with the index

• Performs well for copy-paste induced code clones

Limits for cross-language code clones
• Cross-language code clones usually share fewer tokens

• Would at least need some kind of cross-language mapping

4



Difficulty of cross-language clone detection

Factorial in Java

public int factorial(int n) {

int result = 1;

for (int i = 2; i <= n; i++) {

result *= i;

}

return result;

}

Factorial in Python

def fact(n):

res = 1

for i in range(2, n + 1):

res *= i

return res

5



Difficulty of cross-language clone detection

Java factorial loop AST Python factorial loop AST

6



Our proposal

General idea

Learn AST structure representation

Use learned representation for cross-language clone detection

Overview

• Find a token-level vector representation

• Use end-to-end supervised machine learning to learn AST representation

7



System overview

System currently supports Java and Python

Java AST

Python AST

token 
embedding

token
embedding

LSTM

LSTM

MLP
Clone 

prediction

vector of 
indexes

vector of 
indexes

8

AST encoding

https://github.com/tuvistavie/suplearn-clone-detection

https://github.com/tuvistavie/suplearn-clone-detection


Token embeddings generation

We propose tree-based skipgram

1. Generate a vocabulary

2. For each “target” node, 
generate “context” nodes

3. Feed (target, context) as input, 
output of a single layer MLP

4. Use hidden layer as embeddings

For, i, Call, range, 2, BinOpAdd,
n, 1, body, AugAssignMult, result

9

https://github.com/tuvistavie/bigcode-tools

https://github.com/tuvistavie/bigcode-tools


AST encoding

Feed AST to recurrent neural network

1. Generate tokens sequence from 
AST using depth-first search

2. Map each token to its vector 
representation

3. Feed the sequence to an LSTM 

Prefix depth-first traversal gave us 
the best results

10



Token embeddings generation experiment

• Dataset
• Java: all Apache projects

• ~400k files
• Apache2 license

• Python: popular projects on GitHub
• ~150k files
• Non-viral license (MIT, BSD, Apache)

• Hyper parameters
• Use identifiers or not
• Ancestors window size: 1, 2, 3
• Children window size: 0, 1, 2, 3
• Include siblings or not
• ML related parameters

11



Java token embeddings results

• Semantic somewhat preserved
• Statement, expressions, 

declarations clustered more or less 
correctly

• e.g. Token closest from ForStmt is 
WhileStmt

• Hyperparameters results
• Two level of ancestors works well

• One level of children is enough

• Siblings add too much noise

12



Clone detection experiment goals

1. Evaluate the effectiveness of trained embeddings

2. Tune our model and evaluate its capacity to learn clones

3. Compare our model performance with other clone detection tools

13



Dataset creation for clone detection

• Dataset must have following properties
• Python and Java implementation

• Implement same functionality/program

• Competitive programming is a good candidate
• Scraped AtCoder1 website

14
1 https://atcoder.jp

Measure Value

Problems count 576

Files count 44,620

Avg. Files/problem 77



Clone detection experiment results

• Cross-language is harder than 
single-language detection

• Pre-trained embeddings help 
improving the model

• Removing identifiers loses 
information

F1 Precision Recall

Pretrained 
embeddings

0.66 0.55 0.83

Untrained 
embeddings

0.61 0.49 0.82

No identifiers 0.51 0.40 0.71

15

Java-Python clone detection

Java-Java clone detection

F1 Precision Recall

Pretrained 
embeddings

0.77 0.67 0.92

Untrained 
embeddings

0.74 0.65 0.85

No identifiers 0.69 0.56 0.90

Training and test with 20% of clones in samples



Comparison with SourcererCC

16

Java code clone experiments using our test set, about 1000 files
Our method currently only takes pairs of code: 10002 samples for this experiment

F1 Precision Recall

Our method 0.21 0.12 0.85

SourcererCC 0.05 0.63 0.03

Precision/recall curve



Related work

• Hui-HuiWei & al, Supervised Deep Features for Software Functional Clone Detection by 
Exploiting Lexical and Syntactical Information in Source Code, IJCAI’17

• Single-language clone detection

• Supervised learning approach

• Tree-LSTM like model

• Generates hash-code from AST

• Kraft & al, Cross-Language Clone Detection, SEKE’2008

• Uses common intermediate representation between languages

• Detects clones between VB.NET and C#

17



Future work

• Make better use of the AST structure
• Try other models for encoding AST (e.g. Gated Graph Sequence NN)

• Improve the system to be able to run in linear time
• Add trainable hash layer to the model

• Index hashed vectors using a reversed-index

18



Summary

• Proposed a method to learn AST structure
• Method and hyperparameters set to generate token level embeddings
• End-to-end supervised learning model

• Applied our idea to detect cross-language code clones
• Cross-language code clone detection dataset
• Trained model on code clone dataset

Source code available at

https://github.com/tuvistavie/bigcode-tools

https://github.com/tuvistavie/suplearn-clone-detection

19

https://github.com/tuvistavie/bigcode-tools
https://github.com/tuvistavie/suplearn-clone-detection


Supporting slides follow

20



What is clone detection?

Detecting duplicated code in programs

Base technology for many applications

• Intra-project: find duplicates in a single project
• Find refactoring opportunities
• Quality evaluation metrics

• Inter-project: find duplicate from other projects
• Copyright violation
• Code search
• Detect malicious software

21



Program representations

def add(a, b):

return a + b

Source program

["def", "add", "(", "a", 
"b", ")", ":", "\n", "\t",
"return", "a", "+", "b"]

Token Representation AST Representation

22



Type of clones

4 types of code clone

• Type I: changes in spacing and comments

• Type II: changes in identifier and literals

• Type III: syntactically similar with changes in statements

• Type IV: syntactically dissimilar with same functionality

23



System overview

24



Model overview

25



Zipf’s law

26

Programming language frequency/rank log graph
(not normalized)

Natural languages frequency/rank log graph

Source: https://en.wikipedia.org/wiki/Zipf’s_law

Frequency of any word is inversely proportional to its rank



Model with hash layer

Java AST

Python AST

token 
embedding

token
embedding

LSTM

LSTM

Clone 
prediction

vector of 
indexes

vector of 
indexes

27

Hash

Hash

Distance



Source code normalization

• Remove identifiers

• Remove custom types

28

public int add(Custom a, int b) {
return a.doSomething(b);

}

public int METHOD(TYPE VAR, int VAR) {
return VAR.METHOD(VAR);

}



Clone false-positive example 
Code fragment 1 Code fragment 2

29

import java.util.Scanner;

public class Main{
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int ans = Integer.MAX_VALUE;
for (int i = 1; i <= n; i++) {

int j = n / i;
ans = Math.min(

ans, Math.abs(i - j) + n - i * j);
}
System.out.println(ans);

}
}

import java.util.*;

class Main {
public static void main(String[] args){
Scanner read = new Scanner(System.in);
int x = Integer.parseInt(read.nextLine());
int c = 0;
int sum = 0;
while (sum < x) {
c++;
sum += c;

}
System.out.println(c);

}
}



Embeddings hyperparameters

Parameter Value

Ancestors windows size 2

Descendants window size 1

Siblings False

Embeddings size 100

Vocabulary size 10000

30



Clone detection hyperparameters

Parameter Value

Vocabulary size 10000

Embeddings dimension 100

LSTM Stacked bidirectional ー {100, 50}

Multilayer perceptron 1 layer, 64 units

Optimizer Adam

31



Deckard, Jiang & al., ICSE’07

• Tree-based clone detection

• Rule-based vector generation for AST

• Cluster vectors using LSH

• Support multiple languages

• Designed for single-language clone detection
• Assume clones ASTs have similar structure

32



SourcererCC, Sajnani & al., ICSE’16

• Token-based clone detection

• Uses reversed-index to index tokens

• Optimized for large-scale
• Fast

• Low memory

• Assumes clones have large number of tokens in common
• Works best for clones introduced by copy-paste 

33


