FairPlay: Fraud and Malware Detection in Google Play

Daniel Perez 創造情報専攻 48-146619

Table of content

- Background
- FairPlay fraud detection systems
 - Overview
 - Training data
 - Modules presentation
 - Evaluation
- Summary

About Google Play

- Android official app market place
- One of the biggest app market place
- 30000+ new apps every month
- Plenty of malwares not detected

Android malwares

- Common types of malwares
 - Information collection
 - GPS tracking
 - Stealing contact information
 - Stealing banking info
 - Advertisement
 - Showing undesirable commercial ads
 - Sending ads to contacts
 - Posting ads on social networks

Malware detection approaches

- Static analysis
 - Analyze application permissions
 - Analyze the program source code
- Dynamic analysis
 - Check app CPU usage, packet sent, etc

Android apps promotion

- Android search rank is based on many metrics
 - Users reviews
 - Number of downloads
 - Usage frequency
- Malware developers use search rank fraud
 - Fake reviews
 - Fake downloads and installs
 - Force users to write reviews

Proposed approach

- Detecting malwares through Google Play ecosystem
 - Co-review behaviors
 - Reviews text
 - Relationship between reviews and installs count
 - App permissions evolution

Approach overview

Apps data

- Malware and fraudulent apps (from randomly selected 7756 apps)
 - 212 malware apps: detected as malware by 3+ tools with 10+ reviews
 - 201 fraudulent apps: apps reviewed by 15 fraudulent accounts (found by other research)
- Benign apps
 - Selected 925 apps from "top developers"
 - Chose 200 apps with 10+ reviews not flagged by any antivirus

Reviews data

- Fraudulent reviews
 - Collected 53625 reviews from 201 fraudulent apps
 - Found 188 accounts which reviewed at least 10/201 fraudulent apps, total of 6488 reviews
 - Used reviews from fraudulent accounts and above reviews
- Benign reviews
 - Manually chose 315 reviews with at least 150 characters from popular apps reviews

Graph reminder

- A complete graph is a graph where all vertices are connected
- A clique is a subset of vertices where the induced subgraph is complete

Co-Review Graph

- Undirected weighted graph
 - Vertices: users who reviewed the app
 - Edges: number of apps reviewed in common
- Identifying clique is NP-hard
 - Identify pseudo-cliques instead
 - Pseudo-cliques are identified greedily per-day
 - Pseudo-clique have a density θ greater than

$$\rho = \frac{\sum_{e \in E} w(e)}{\binom{n}{2}}$$

Co-Review Graph features

- Following features are extracted
 - Number of cliques with $\rho > \theta$
 - Maximum, median, SD of densities in pseudo-cliques
 - Maximum, median, SD of pseudo-clique sizes
 - Number of nodes that belong to at least 1 pseudoclique

Reviewer feedback

- Detect and filter fraudulent reviews
 - Reviewer based features
 - Text based features

- Identify malware from remaining reviews
 - Reviews should be balanced
 - Review sentiment and rating should be related

Reviewer feedback features

- Following features are extracted
 - % of reviews with malware indicators
 - % of reviews with fraud words
 - % of reviews with benign words
 - Fraud review impact on rating

Inter-Review Relation

- Temporal relation between modules
 - Detect days with spikes of positive reviews
 - Detect amplitude of the spikes
- Relation between review, rating and install counts
 - Installations count / ratings count
 - Installations count / reviews count

Jekyll-Hyde App detection

Apps gradually asking for more dangerous permissions

- Extracted features
 - # of permissions
 - # of dangerous permissions
 - # of dangerous permission ramps
 - # of dangerous permissions added

Evaluation

- Evaluated with three algorithms
 - Decision tree
 - Multi-layer perceptron
 - Random Forest
- Evaluated for
 - Classifying reviews
 - Classifying fraudulent apps
 - Classifying malwares

Experimental results

Review classification results

Strategy	FPR%	FNR%	Accuracy%
Decision Tree (DT)	2.46	6.03	95.98
Multi-layer Perceptron (MLP)	1.47	6.67	96.26
Random Forest (RF)	2.46	5.40	96.26

Malware classification results

Strategy	FPR%	FNR%	Accuracy%
FairPlay/DT	4.02	4.25	95.86
FairPlay/MLP	4.52	4.72	95.37
FairPlay/RF	1.51	6.13	96.11
Sarma et al. / SVM	65.32	24.47	55.23

Generalization to new apps

- 1. Train FairPlay with Random Forest
- Select 1600 apps with 10+ reviews from 8 categories
- 3. Collect data for reviewers and their reviews
- ➡ 372 apps (23%) were fraudulent
- 71% of apps have > 3 pseudo cliques with $\theta \ge 3$
- Fraudulent apps had at least 20 fraud indicator words

Coercive Campaign Apps

- New type of attack detected: harassing user to either
 - Write a positive review for the app
 - Install another app
 - Write a positive review for another app

Summary

- FairPlay uses Google play ecosystem to detect fraudulent apps and malwares
- A lot of malwares are involved in search rank fraud
- Both malware and search rank fraud can be identified with high accuracy